\(\int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx\) [19]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 114 \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {2} a^3 \arctan \left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}}-\frac {4 a^3 \sqrt {e \cot (c+d x)}}{d e^2}+\frac {2 \left (a^3+a^3 \cot (c+d x)\right )}{d e \sqrt {e \cot (c+d x)}} \]

[Out]

2*a^3*arctan(1/2*(e^(1/2)-cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*x+c))^(1/2))*2^(1/2)/d/e^(3/2)+2*(a^3+a^3*cot(d
*x+c))/d/e/(e*cot(d*x+c))^(1/2)-4*a^3*(e*cot(d*x+c))^(1/2)/d/e^2

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3646, 3711, 3613, 211} \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {2} a^3 \arctan \left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}}-\frac {4 a^3 \sqrt {e \cot (c+d x)}}{d e^2}+\frac {2 \left (a^3 \cot (c+d x)+a^3\right )}{d e \sqrt {e \cot (c+d x)}} \]

[In]

Int[(a + a*Cot[c + d*x])^3/(e*Cot[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[2]*a^3*ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/(d*e^(3/2)) - (4*a^3*S
qrt[e*Cot[c + d*x]])/(d*e^2) + (2*(a^3 + a^3*Cot[c + d*x]))/(d*e*Sqrt[e*Cot[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 3646

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (a^3+a^3 \cot (c+d x)\right )}{d e \sqrt {e \cot (c+d x)}}-\frac {2 \int \frac {-2 a^3 e^2-a^3 e^2 \cot (c+d x)-a^3 e^2 \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{e^3} \\ & = -\frac {4 a^3 \sqrt {e \cot (c+d x)}}{d e^2}+\frac {2 \left (a^3+a^3 \cot (c+d x)\right )}{d e \sqrt {e \cot (c+d x)}}-\frac {2 \int \frac {-a^3 e^2-a^3 e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{e^3} \\ & = -\frac {4 a^3 \sqrt {e \cot (c+d x)}}{d e^2}+\frac {2 \left (a^3+a^3 \cot (c+d x)\right )}{d e \sqrt {e \cot (c+d x)}}+\frac {\left (4 a^6 e\right ) \text {Subst}\left (\int \frac {1}{-2 a^6 e^4-e x^2} \, dx,x,\frac {-a^3 e^2+a^3 e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{d} \\ & = \frac {2 \sqrt {2} a^3 \arctan \left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{d e^{3/2}}-\frac {4 a^3 \sqrt {e \cot (c+d x)}}{d e^2}+\frac {2 \left (a^3+a^3 \cot (c+d x)\right )}{d e \sqrt {e \cot (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(357\) vs. \(2(114)=228\).

Time = 3.12 (sec) , antiderivative size = 357, normalized size of antiderivative = 3.13 \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\frac {a^3 (1+\cot (c+d x))^3 \sin (c+d x) \left (-4 \cos ^2(c+d x)+4 \arctan \left (\sqrt [4]{-\cot ^2(c+d x)}\right ) (-\cot (c+d x))^{5/4} \sqrt [4]{\cot (c+d x)} \sin ^2(c+d x)+4 \text {arctanh}\left (\sqrt [4]{-\cot ^2(c+d x)}\right ) \sqrt [4]{-\cot (c+d x)} \cot ^{\frac {5}{4}}(c+d x) \sin ^2(c+d x)+2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right ) \cot ^{\frac {3}{2}}(c+d x) \sin ^2(c+d x)-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right ) \cot ^{\frac {3}{2}}(c+d x) \sin ^2(c+d x)+\sqrt {2} \cot ^{\frac {3}{2}}(c+d x) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right ) \sin ^2(c+d x)-\sqrt {2} \cot ^{\frac {3}{2}}(c+d x) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right ) \sin ^2(c+d x)+2 \sin (2 (c+d x))\right )}{2 d (e \cot (c+d x))^{3/2} (\cos (c+d x)+\sin (c+d x))^3} \]

[In]

Integrate[(a + a*Cot[c + d*x])^3/(e*Cot[c + d*x])^(3/2),x]

[Out]

(a^3*(1 + Cot[c + d*x])^3*Sin[c + d*x]*(-4*Cos[c + d*x]^2 + 4*ArcTan[(-Cot[c + d*x]^2)^(1/4)]*(-Cot[c + d*x])^
(5/4)*Cot[c + d*x]^(1/4)*Sin[c + d*x]^2 + 4*ArcTanh[(-Cot[c + d*x]^2)^(1/4)]*(-Cot[c + d*x])^(1/4)*Cot[c + d*x
]^(5/4)*Sin[c + d*x]^2 + 2*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(3/2)*Sin[c + d*x]^2 -
2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(3/2)*Sin[c + d*x]^2 + Sqrt[2]*Cot[c + d*x]^(3/2
)*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]*Sin[c + d*x]^2 - Sqrt[2]*Cot[c + d*x]^(3/2)*Log[1 + Sqrt[
2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]*Sin[c + d*x]^2 + 2*Sin[2*(c + d*x)]))/(2*d*(e*Cot[c + d*x])^(3/2)*(Cos[c
 + d*x] + Sin[c + d*x])^3)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(304\) vs. \(2(99)=198\).

Time = 0.04 (sec) , antiderivative size = 305, normalized size of antiderivative = 2.68

method result size
derivativedivides \(-\frac {2 a^{3} \left (\sqrt {e \cot \left (d x +c \right )}+2 e \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )-\frac {e}{\sqrt {e \cot \left (d x +c \right )}}\right )}{d \,e^{2}}\) \(305\)
default \(-\frac {2 a^{3} \left (\sqrt {e \cot \left (d x +c \right )}+2 e \left (\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )-\frac {e}{\sqrt {e \cot \left (d x +c \right )}}\right )}{d \,e^{2}}\) \(305\)
parts \(-\frac {2 a^{3} e \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2} \left (e^{2}\right )^{\frac {1}{4}}}-\frac {1}{e^{2} \sqrt {e \cot \left (d x +c \right )}}\right )}{d}-\frac {2 a^{3} \left (\sqrt {e \cot \left (d x +c \right )}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{d \,e^{2}}-\frac {3 a^{3} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \,e^{2}}-\frac {3 a^{3} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d e \left (e^{2}\right )^{\frac {1}{4}}}\) \(594\)

[In]

int((a+a*cot(d*x+c))^3/(e*cot(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*a^3/e^2*((e*cot(d*x+c))^(1/2)+2*e*(1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))
^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1
/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/8/(e^2)^(1/4)
*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*
cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)
/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))-e/(e*cot(d*x+c))^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 372, normalized size of antiderivative = 3.26 \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\left [\frac {\sqrt {2} {\left (a^{3} e \cos \left (2 \, d x + 2 \, c\right ) + a^{3} e\right )} \sqrt {-\frac {1}{e}} \log \left (-\sqrt {2} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sqrt {-\frac {1}{e}} {\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} - 2 \, \sin \left (2 \, d x + 2 \, c\right ) + 1\right ) - 2 \, {\left (a^{3} \cos \left (2 \, d x + 2 \, c\right ) - a^{3} \sin \left (2 \, d x + 2 \, c\right ) + a^{3}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}}, \frac {2 \, {\left (\frac {\sqrt {2} {\left (a^{3} e \cos \left (2 \, d x + 2 \, c\right ) + a^{3} e\right )} \arctan \left (-\frac {\sqrt {2} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} {\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \, \sqrt {e} {\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )}}\right )}{\sqrt {e}} - {\left (a^{3} \cos \left (2 \, d x + 2 \, c\right ) - a^{3} \sin \left (2 \, d x + 2 \, c\right ) + a^{3}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}\right )}}{d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}}\right ] \]

[In]

integrate((a+a*cot(d*x+c))^3/(e*cot(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[(sqrt(2)*(a^3*e*cos(2*d*x + 2*c) + a^3*e)*sqrt(-1/e)*log(-sqrt(2)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2
*c))*sqrt(-1/e)*(cos(2*d*x + 2*c) + sin(2*d*x + 2*c) - 1) - 2*sin(2*d*x + 2*c) + 1) - 2*(a^3*cos(2*d*x + 2*c)
- a^3*sin(2*d*x + 2*c) + a^3)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/(d*e^2*cos(2*d*x + 2*c) + d*e^2
), 2*(sqrt(2)*(a^3*e*cos(2*d*x + 2*c) + a^3*e)*arctan(-1/2*sqrt(2)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2
*c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c) + 1)/(sqrt(e)*(cos(2*d*x + 2*c) + 1)))/sqrt(e) - (a^3*cos(2*d*x + 2*
c) - a^3*sin(2*d*x + 2*c) + a^3)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/(d*e^2*cos(2*d*x + 2*c) + d*
e^2)]

Sympy [F]

\[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=a^{3} \left (\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {3 \cot {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {3 \cot ^{2}{\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx + \int \frac {\cot ^{3}{\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx\right ) \]

[In]

integrate((a+a*cot(d*x+c))**3/(e*cot(d*x+c))**(3/2),x)

[Out]

a**3*(Integral((e*cot(c + d*x))**(-3/2), x) + Integral(3*cot(c + d*x)/(e*cot(c + d*x))**(3/2), x) + Integral(3
*cot(c + d*x)**2/(e*cot(c + d*x))**(3/2), x) + Integral(cot(c + d*x)**3/(e*cot(c + d*x))**(3/2), x))

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+a*cot(d*x+c))^3/(e*cot(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\int { \frac {{\left (a \cot \left (d x + c\right ) + a\right )}^{3}}{\left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cot(d*x+c))^3/(e*cot(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)^3/(e*cot(d*x + c))^(3/2), x)

Mupad [B] (verification not implemented)

Time = 12.45 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.04 \[ \int \frac {(a+a \cot (c+d x))^3}{(e \cot (c+d x))^{3/2}} \, dx=\frac {2\,a^3}{d\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}-\frac {2\,a^3\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d\,e^2}-\frac {\sqrt {2}\,a^3\,\left (2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\sqrt {e}}\right )+2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\sqrt {e}}+\frac {\sqrt {2}\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{2\,e^{3/2}}\right )\right )}{d\,e^{3/2}} \]

[In]

int((a + a*cot(c + d*x))^3/(e*cot(c + d*x))^(3/2),x)

[Out]

(2*a^3)/(d*e*(e*cot(c + d*x))^(1/2)) - (2*a^3*(e*cot(c + d*x))^(1/2))/(d*e^2) - (2^(1/2)*a^3*(2*atan((2^(1/2)*
(e*cot(c + d*x))^(1/2))/(2*e^(1/2))) + 2*atan((2^(1/2)*(e*cot(c + d*x))^(1/2))/(2*e^(1/2)) + (2^(1/2)*(e*cot(c
 + d*x))^(3/2))/(2*e^(3/2)))))/(d*e^(3/2))